Typescript: Difference between revisions
(26 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
e.g. | e.g. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let myString = "fred"; | let myString = "fred"; | ||
Line 16: | Line 16: | ||
Typescript supports classes and access modifiers | Typescript supports classes and access modifiers | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
class Person { | class Person { | ||
Line 86: | Line 86: | ||
== No more var == | == No more var == | ||
Don't use var but instead use | Don't use var but instead use | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts">let</syntaxhighlight> | ||
or | or | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts">const</syntaxhighlight> | ||
== Base Data Types == | == Base Data Types == | ||
Line 108: | Line 108: | ||
Union types | Union types | ||
This allows more than type e.g. | This allows more than type e.g. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let number_string : string | number | let number_string : string | number | ||
</syntaxhighlight> | </syntaxhighlight> | ||
Not good if you ask me. However maybe useful for strings e.g. | Not good if you ask me. However maybe useful for strings e.g. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let null_string : string | null | let null_string : string | null | ||
</syntaxhighlight> | </syntaxhighlight> | ||
Line 119: | Line 119: | ||
== Type assertions == | == Type assertions == | ||
You can assert types in one of two ways | You can assert types in one of two ways | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let value: any = 5; | let value: any = 5; | ||
Line 126: | Line 126: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
or | or | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let fixedString: string = (value as number).toFixed(4); | let fixedString: string = (value as number).toFixed(4); | ||
</syntaxhighlight> | </syntaxhighlight> | ||
Line 133: | Line 133: | ||
== Adding types == | == Adding types == | ||
With typescript we can specify types e.g. | With typescript we can specify types e.g. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function funFunc(score: number, message1: string = "default ", message2?: string): string { | function funFunc(score: number, message1: string = "default ", message2?: string): string { | ||
return message1 + message2; | return message1 + message2; | ||
Line 145: | Line 145: | ||
e.g. | e.g. | ||
For zero parameters | For zero parameters | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let greeting = () => console.log("Hello world"); | let greeting = () => console.log("Hello world"); | ||
greeting(); // Hello world | greeting(); // Hello world | ||
Line 151: | Line 151: | ||
For 1 parameter | For 1 parameter | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let squareit = x => x * x; | let squareit = x => x * x; | ||
let result = squareit(4); // 16 | let result = squareit(4); // 16 | ||
Line 157: | Line 157: | ||
For multiple parameters | For multiple parameters | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let adder = (a,b) = a + b; | let adder = (a,b) = a + b; | ||
let sum = adder(2,3); // 5 | let sum = adder(2,3); // 5 | ||
Line 163: | Line 163: | ||
The example below shows a function on array (filter) which takes a function as an argument where the arguments are element, index and original array. | The example below shows a function on array (filter) which takes a function as an argument where the arguments are element, index and original array. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
var scores = [70,125,85,110, 10000]; | var scores = [70,125,85,110, 10000]; | ||
Line 185: | Line 185: | ||
Without arrow function | Without arrow function | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function Book() { | function Book() { | ||
let self = this; | let self = this; | ||
Line 196: | Line 196: | ||
With arrow function | With arrow function | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function Book() { | function Book() { | ||
this.publishDate = 2016; | this.publishDate = 2016; | ||
Line 208: | Line 208: | ||
You can assign functions with the same signatures to variables with typescript. E.g. | You can assign functions with the same signatures to variables with typescript. E.g. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function logError(err: string) : void { | function logError(err: string) : void { | ||
Line 235: | Line 235: | ||
== Rest Parameters (params or variadic) == | == Rest Parameters (params or variadic) == | ||
Example below | Example below | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function GetBooksReadForCustomer(name: string, ...bookIDs: number[]) { | function GetBooksReadForCustomer(name: string, ...bookIDs: number[]) { | ||
Line 246: | Line 246: | ||
You can declare several overloads for a function but implement just once. Not quite sure of the benefit but there you go. | You can declare several overloads for a function but implement just once. Not quite sure of the benefit but there you go. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function GetTitles(author: string) string[]; | function GetTitles(author: string) string[]; | ||
function GetTitles(author: boolean) string[]; | function GetTitles(author: boolean) string[]; | ||
Line 267: | Line 267: | ||
=== Standard === | === Standard === | ||
Basic interfaces | Basic interfaces | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
interface Employee { | interface Employee { | ||
name: string; | name: string; | ||
Line 292: | Line 292: | ||
=== Interface for Function types === | === Interface for Function types === | ||
Combining with function types | Combining with function types | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// Simple function | // Simple function | ||
function CreateCustomerID(name: string, id: number): string { | function CreateCustomerID(name: string, id: number): string { | ||
Line 313: | Line 313: | ||
Example | Example | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
interface DamageLogger { | interface DamageLogger { | ||
(damage: string) : void; | (damage: string) : void; | ||
Line 328: | Line 328: | ||
Example below, default access is public | Example below, default access is public | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
class Developer { | class Developer { | ||
Line 370: | Line 370: | ||
====Initialise attribute without type==== | ====Initialise attribute without type==== | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// C# ish | // C# ish | ||
class Author { | class Author { | ||
Line 389: | Line 389: | ||
====Class Expression==== | ====Class Expression==== | ||
You can create an expression of a class. E.g. implement an abstract on on the fly. | You can create an expression of a class. E.g. implement an abstract on on the fly. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let Newspaper = class extends ReferenceItem { | let Newspaper = class extends ReferenceItem { | ||
ImplementationOfAbstract: void { | ImplementationOfAbstract: void { | ||
Line 402: | Line 402: | ||
== Importing == | == Importing == | ||
To import typescript classes you can use the Triple-slash directive | To import typescript classes you can use the Triple-slash directive | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
/// <reference path="player.ts" /> | /// <reference path="player.ts" /> | ||
</syntaxhighlight> | </syntaxhighlight> | ||
Line 426: | Line 426: | ||
== Interfaces and Classes == | == Interfaces and Classes == | ||
Much the same as c# as well | Much the same as c# as well | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
interface Inventory<T> { | interface Inventory<T> { | ||
getNewestItem:() => T; | getNewestItem:() => T; | ||
Line 447: | Line 447: | ||
== Constraints == | == Constraints == | ||
This is just for typescript I think | This is just for typescript I think | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
class Catalog<T extends CatalogItem> implements Inventory<T> { | class Catalog<T extends CatalogItem> implements Inventory<T> { | ||
Line 472: | Line 472: | ||
== Destructuring == | == Destructuring == | ||
Like javascript | Like javascript | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let medals : string[] = ['gold', 'silver', 'bronze'] | let medals : string[] = ['gold', 'silver', 'bronze'] | ||
let [first, second, third] = medals; | let [first, second, third] = medals; | ||
Line 490: | Line 490: | ||
Additional to other array | Additional to other array | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let newBookIDs = [10,20] | let newBookIDs = [10,20] | ||
let allBookIDs = [1,2,3, ...newBookIDs] // 1,2,3,10,20 | let allBookIDs = [1,2,3, ...newBookIDs] // 1,2,3,10,20 | ||
Line 497: | Line 497: | ||
== Intersection types == | == Intersection types == | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// Previously we had union types on functions e.g. | // Previously we had union types on functions e.g. | ||
Line 523: | Line 523: | ||
== Mixins == | == Mixins == | ||
Not sure if this is worthwhile. It seems to be a form of multiple inheritance similar to C++ which most people hate. The key thing is the applyMixins which copies the functions from the base classes to the new class and is "Magic" | Not sure if this is worthwhile. It seems to be a form of multiple inheritance similar to C++ which most people hate. The key thing is the applyMixins which copies the functions from the base classes to the new class and is "Magic" | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// Disposable Mixin | // Disposable Mixin | ||
Line 576: | Line 576: | ||
== String Literal Types and Type Aliases == | == String Literal Types and Type Aliases == | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// Like enums | // Like enums | ||
let empCategory: 'Manager' | 'Non-Manager' | let empCategory: 'Manager' | 'Non-Manager' | ||
Line 587: | Line 587: | ||
=== Polymorphic this === | === Polymorphic this === | ||
The this is referring to the type returned. e.g. | The this is referring to the type returned. e.g. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
class Vehicle { | class Vehicle { | ||
Line 617: | Line 617: | ||
This looks like bad news. You can merge things which you declare without saying you are doing it but by just clashing with names e.g. | This looks like bad news. You can merge things which you declare without saying you are doing it but by just clashing with names e.g. | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
interface Book { | interface Book { | ||
Line 635: | Line 635: | ||
Maybe this is a better example where an extension is built on an existing class | Maybe this is a better example where an extension is built on an existing class | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
import {UniversityLibrarian} from './classes' | import {UniversityLibrarian} from './classes' | ||
Line 653: | Line 653: | ||
==== typeof type guard ==== | ==== typeof type guard ==== | ||
Protect code for correct type | Protect code for correct type | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
if ( typeof x === 'string') | if ( typeof x === 'string') | ||
{ | { | ||
Line 670: | Line 670: | ||
==== Custom type guard ==== | ==== Custom type guard ==== | ||
You can write your own using | You can write your own using | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function isBook(text: Book | Magazine) : text is Book { | function isBook(text: Book | Magazine) : text is Book { | ||
return (<Book>text).author !== undefined | return (<Book>text).author !== undefined | ||
Line 679: | Line 679: | ||
The data type symbol is a primitive data type. The Symbol() function returns a value of type symbol, has static properties that expose several members of built-in objects, has static methods that expose the global symbol registry, and resembles a built-in object class, but is incomplete as a constructor because it does not support the syntax "new Symbol()". | The data type symbol is a primitive data type. The Symbol() function returns a value of type symbol, has static properties that expose several members of built-in objects, has static methods that expose the global symbol registry, and resembles a built-in object class, but is incomplete as a constructor because it does not support the syntax "new Symbol()". | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
let mySymbol = Symbol('first_symbol'); | let mySymbol = Symbol('first_symbol'); | ||
Line 706: | Line 706: | ||
==== Introduction ==== | ==== Introduction ==== | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// Class decorator | // Class decorator | ||
Line 750: | Line 750: | ||
==== Class Decorator ==== | ==== Class Decorator ==== | ||
This is the signature for a class decorator | This is the signature for a class decorator | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// ClassDectorator Type | // ClassDectorator Type | ||
Line 760: | Line 760: | ||
Example where the constructor is not replaced | Example where the constructor is not replaced | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
export function sealed(name: string ) { | export function sealed(name: string ) { | ||
Line 777: | Line 777: | ||
Example where the constructor is replaced | Example where the constructor is replaced | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
export function logger<TFunction extends Function>(target: TFunction): TFunction { | export function logger<TFunction extends Function>(target: TFunction): TFunction { | ||
Line 798: | Line 798: | ||
==== Method Decorator ==== | ==== Method Decorator ==== | ||
Example | Example | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
export function readOnly(target : Object, | export function readOnly(target : Object, | ||
propertyKey: string, | propertyKey: string, | ||
Line 810: | Line 810: | ||
// Changing to a factory decorator | // Changing to a factory decorator | ||
// i.e. remove export and replace with return, remove function name | // i.e. remove export and replace with return, remove function name | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
export function writable(isWritable : boolean) { | export function writable(isWritable : boolean) { | ||
return function (target : Object, | return function (target : Object, | ||
Line 837: | Line 837: | ||
=== Callback functions === | === Callback functions === | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
// Create Interface (not required by nicer | // Create Interface (not required by nicer | ||
Line 888: | Line 888: | ||
* Simple API, then, catch | * Simple API, then, catch | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function doAsyncWork(resolve, reject) { | function doAsyncWork(resolve, reject) { | ||
Line 908: | Line 908: | ||
Taking callback example | Taking callback example | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
function getBooksByCategory(cat: Category): Promise<string[]> { | function getBooksByCategory(cat: Category): Promise<string[]> { | ||
Line 949: | Line 949: | ||
===async await=== | ===async await=== | ||
Example | Example | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
async function doAsyncWork() { | async function doAsyncWork() { | ||
Line 958: | Line 958: | ||
Taking promise example | Taking promise example | ||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts"> | ||
async function logSearchResult(bookCategory: Category) { | async function logSearchResult(bookCategory: Category) { | ||
let foundBooks = await getBooksByCategory(bookCategory) | let foundBooks = await getBooksByCategory(bookCategory) | ||
Line 970: | Line 970: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
= | =More Typescript Stuff= | ||
== | Revisiting the transformation aspects of typescript gave me probably some repeated noted to help my tired old brain. These appeal to me because my brain struggles with the problem and the solution is obvious. I am trying to write these down so that I can get the pattern spotting in my brain correctly. | ||
==No Enough Generics== | |||
<syntaxhighlight lang=" | This a struggle, as they all are but the issue was, of course, not enough parameters | ||
const | <syntaxhighlight lang="ts"> | ||
import { Equal, Expect } from "../helpers/type-utils"; | |||
const getValue = <TObj>(obj: TObj, key: keyof TObj) => { | |||
return obj[key]; | |||
}; | }; | ||
const obj = { | |||
a: 1, | |||
b: "some-string", | |||
c: true, | |||
}; | |||
} | |||
const numberResult = getValue(obj, "a"); | |||
const stringResult = getValue(obj, "b"); | |||
const booleanResult = getValue(obj, "c"); | |||
type tests = [ | |||
Expect<Equal<typeof numberResult, number>>, | |||
Expect<Equal<typeof stringResult, string>>, | |||
Expect<Equal<typeof booleanResult, boolean>> | |||
]; | |||
export {}; | |||
</syntaxhighlight> | </syntaxhighlight> | ||
All of the tests fail as the return type is whatever types are in the object. In this case, number, string and boolean. The test is expecting a specific type and the result is a union of number | string | boolean. To be more specific we need to add another generic argument which when you see it it is obvious. What was not obvious to me was the thought of adding more arguments to a solution. By default felt this would make it more complicated | |||
<syntaxhighlight lang="ts"> | |||
<syntaxhighlight lang=" | const getValue = <TObj, TKey extends keyof TObj>(obj: TObj, key: TKey) => { | ||
return obj[key]; | |||
}; | |||
</syntaxhighlight> | </syntaxhighlight> | ||
== | ==Wrapping a Api== | ||
Sometimes we want to apply a generic to the functions are inferred with the correct type. | |||
<syntaxhighlight lang=" | <syntaxhighlight lang="ts" highlight="16,21"> | ||
const useStyled = <TTheme = {}>(func: (theme: TTheme) => CSSProperties) => { | |||
// Imagine that this function hooks into a global theme | |||
// and returns the CSSProperties | |||
} | return {} as CSSProperties; | ||
}; | |||
interface MyTheme { | |||
color: { | |||
primary: string; | |||
}; | |||
fontSize: { | |||
small: string; | |||
}; | |||
} | } | ||
const buttonStyle = useStyled<MyTheme>((theme) => ({ | |||
color: theme.color.primary, | |||
fontSize: theme.fontSize.small, | |||
})); | |||
const | const divStyle = useStyled<MyTheme>((theme) => ({ | ||
backgroundColor: theme.color.primary, | |||
})); | |||
} | |||
</syntaxhighlight> | </syntaxhighlight> | ||
Passing the generic MyTheme can be tedious and lead to mistakes. We can solve this with a builder function. I.E. a function does this once for us. | |||
<syntaxhighlight lang="ts" highlight="1-7, 18"> | |||
const makeUseStyled = <TTheme = {}>() => { | |||
const useStyled = (func: (theme: TTheme) => CSSProperties) => { | |||
return {} as CSSProperties; | |||
}; | |||
return useStyled; | |||
}; | |||
interface | interface MyTheme { | ||
color: { | |||
primary: string; | |||
}; | |||
} | fontSize: { | ||
small: string; | |||
}; | |||
} | } | ||
export const useStyled = makeUseStyled<MyTheme>(); | |||
</syntaxhighlight> | </syntaxhighlight> | ||
Now the exported functions knows we are using MyTheme and we can now write without specifying MyTheme | |||
<syntaxhighlight lang="ts"> | |||
<syntaxhighlight lang=" | const buttonStyle = useStyled((theme) => ({ | ||
color: theme.color.primary, | |||
fontSize: theme.fontSize.small, | |||
})); | |||
} | |||
const divStyle = useStyled((theme) => ({ | |||
backgroundColor: theme.color.primary, | |||
})); | |||
} | |||
</syntaxhighlight> | </syntaxhighlight> | ||
==Function Overloads== | |||
This probably was not new but seems new. For generics we had the say hello, wave goodbye - well almost. We solved this with generics. | |||
<syntaxhighlight lang="ts"> | |||
import { expect, it } from "vitest"; | |||
import { Equal, Expect } from "../helpers/type-utils"; | |||
function youSayGoodbyeISayHello<TGreeting extends "hello" | "goodbye">( | |||
greeting: TGreeting, | |||
): TGreeting extends "hello" ? "goodbye" : "hello" { | |||
return (greeting === "goodbye" ? "hello" : "goodbye") as any; | |||
} | } | ||
it("Should return goodbye when hello is passed in", () => { | |||
const result = youSayGoodbyeISayHello("hello"); | |||
type test = [Expect<Equal<typeof result, "goodbye">>]; | |||
< | |||
expect(result).toEqual("goodbye"); | |||
}); | |||
it("Should return hello when goodbye is passed in", () => { | |||
const result = youSayGoodbyeISayHello("goodbye"); | |||
const | |||
type test = [Expect<Equal<typeof result, "hello">>]; | |||
Equal | |||
< | |||
expect(result).toEqual("hello"); | |||
}); | |||
} | |||
</syntaxhighlight> | </syntaxhighlight> | ||
For Function overloads this is a lot easier. It seems more like function restrictions to me as the implementation is an amalgamation of the possible options and the function signatures are the permissible types | |||
<syntaxhighlight lang="ts"> | |||
function youSayGoodbyeISayHello(greeting: "goodbye"): "hello"; | |||
function youSayGoodbyeISayHello(greeting: "hello"): "goodbye"; | |||
function youSayGoodbyeISayHello(greeting: "goodbye" | "hello") { | |||
return greeting === "goodbye" ? "hello" : "goodbye"; | |||
== | |||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 22:56, 6 November 2024
Introduction
TypeScript is a typed language which produces javascript.
e.g.
let myString = "fred";
let myBoolean = true;
function createMessage(name:string) {
}
Typescript supports classes and access modifiers
class Person {
name: string
lastName: string
public Person(name:string) {
this.name = name;
}
public void setLastName(lastName: string) {
this.lastName = lastName;
}
}
Configuration
tsconfig
You can set the options for the compiler you can specify a tsconfig.json file. By using
tsc --init
you get a default file.
You can inherit tsconfigs from parent directories. This compiles all *.ts files in this directory and child directories.
{
"extends": "../tsconfig.base",
"compilerOptions": {
"removeComments": true
},
"include": [
"./**/*.ts"
]
}
Webpack Configuration
The ts-loader module allows recompiling of the type script and you need to install it if using.
module.exports = {
entry: './app/app.ts',
devtool: 'inline-source-map'
module: {
rules: [
{
test: /\.tsx?$/,
use: 'ts-loader',
exclude: /node_modules/
}
]
},
resolve: {
extensions: ['.tsx', '.ts', 'js']
},
output: {
filename: 'bundle.js'
},
devServer: {
inline: false
}
};
Data Types
No more var
Don't use var but instead use
let
or
const
Base Data Types
The following types are available
- Boolean
- Number
- String
- Array
- Enum (not in javascript e.g. enum Category {biology, Poetry, Fiction})
- Tuple (e.g. let myTuple: [number, string] = [25,'truck'] not other elements can have only number of string e.g. myTuple[2] = 'fred')
Other types
- void
- null
- undefined
- Never (e.g. for infinite loop return types)
- Any (e.g. for when using types not guaranteed from other libraries)
Union types This allows more than type e.g.
let number_string : string | number
Not good if you ask me. However maybe useful for strings e.g.
let null_string : string | null
By default the null is not allowed to be assigned without a union declaration.
Type assertions
You can assert types in one of two ways
let value: any = 5;
let fixedString: string = (<number>value).toFixed(4);
console.log(fixedString); // 5.0000
or
let fixedString: string = (value as number).toFixed(4);
Functions
Adding types
With typescript we can specify types e.g.
function funFunc(score: number, message1: string = "default ", message2?: string): string {
return message1 + message2;
}
The ? means the parameters is option and the final colon shows the return value of the function
Arrow Functions or lamdas
These take the format of
parameters => function body
e.g. For zero parameters
let greeting = () => console.log("Hello world");
greeting(); // Hello world
For 1 parameter
let squareit = x => x * x;
let result = squareit(4); // 16
For multiple parameters
let adder = (a,b) = a + b;
let sum = adder(2,3); // 5
The example below shows a function on array (filter) which takes a function as an argument where the arguments are element, index and original array.
var scores = [70,125,85,110, 10000];
var highscores = scores.filter((element, index, array) => {
var result = false
if (index === 0) {
console.log("arrrrayyy", array)
result = true;
}
if(element > 100) {
result = true;
}
return result;
});
console.log("test");
console.log("iain", highscores);
Another example,
Without arrow function
function Book() {
let self = this;
self.publishDate = 2016;
setInterval(function() {
console.log(self.publishDate);
}, 1000)
}
With arrow function
function Book() {
this.publishDate = 2016;
setInterval(() = > {
console.log(this.publishDate);
}, 1000)
}
function types (delegates)
You can assign functions with the same signatures to variables with typescript. E.g.
function logError(err: string) : void {
console.error(err);
}
function logLog(err: string) : void {
console.log(err);
}
let logger : (value: string) => void;
if(x === 1)
{
logger = logError;
}
else
{
logger = logLog;
}
logger('Score: ${x}');
Rest Parameters (params or variadic)
Example below
function GetBooksReadForCustomer(name: string, ...bookIDs: number[]) {
}
let books = GetBooksReadForCustomer('Bob', 1,2,3);
Function Overloads
You can declare several overloads for a function but implement just once. Not quite sure of the benefit but there you go.
function GetTitles(author: string) string[];
function GetTitles(author: boolean) string[];
function GetTitles(author: any) string[] {
if(typeof bookProperty == 'string') {
// do stuff
}
else if(typeof bookProperty == 'boolean') {
// do stuff
}
return 'stuff';
}
Custom types
Typescript supports classes and interfaces
Interfaces
Standard
Basic interfaces
interface Employee {
name: string;
title: string;
}
interface Manager extends Employee {
department : string;
numberOfEmployees: number;
scheduleMeeting: (topic: string) => void;
}
let developer = {
name: 'iain',
title: 'GDB',
editor: 'Visual Studio Code'
}
let newEmployee: Employee = developer;
Interface for Function types
Combining with function types
// Simple function
function CreateCustomerID(name: string, id: number): string {
return name + id;
}
// Define an interface
interface StringGenerator {
(chars: string, nums: number): string;
}
// Old way
let IdGenerator: (chars: string, nums: number) => string;
IdGenerator = CreateCustomerID;
// Improved way
let IdGenerator = StringGenerator;
Example
interface DamageLogger {
(damage: string) : void;
}
let logDamage: DamageLogger;
logDamage = (damage: string) => console.log('Damage reported: ' + damage);
logDamage('coffee stains'); // Damage reported: coffee stains
Classes
Basic Stuff
Example below, default access is public
class Developer {
department: string;
private _title: string;
get title(): string {
return this._title;
}
set title(newTitle: string) {
this._title = newTitle.toUppperCase();
}
// Static members and attributes exist
static could_be_a_const: string = 'Hello me';
static logMe() {
console.log('Hello');
}
}
// Extending
class WebDeveloper extends Developer {
readonly favoriteEditor: string
constructor(editor: string) {
super();
this.favoriteEditor = editor;
}
}
// Abstract
class MyClass {
abstract printStuff(): void;
}
Non C# Stuff
Initialise attribute without type
// C# ish
class Author {
name: string;
constructor(inName: string) {
name = inName;
}
}
// Typescript
class Author {
constructor(public name: string) {
}
}
Class Expression
You can create an expression of a class. E.g. implement an abstract on on the fly.
let Newspaper = class extends ReferenceItem {
ImplementationOfAbstract: void {
console.log('I am implemented now');
}
}
let myPaper = new Newspaper('The Gazette', 2016);
myPaper.ImplementationOfAbstract();
Importing
To import typescript classes you can use the Triple-slash directive
/// <reference path="player.ts" />
Generics
Array
Array is a built in Generic e.g.
let Books : Book[]
// With Generic Array
let Books : Array<Book>
Functions
Much the same as c#
function LogAndReturn<T>)thing : T) : T {
console.log(thing);
return thing;
}
let someString : string = LogAndReturn<string>('log this');
Interfaces and Classes
Much the same as c# as well
interface Inventory<T> {
getNewestItem:() => T;
addItem: (newItem: T) => void;
getAllItems: () => Array<T>;
}
class Catalog<T> implements Inventory<T> {
private catalogItems = new Array<T>();
addItem(newItem: T)_ {
this.catalogItems.push(newItem);
}
...
}
let bookCatalog = new Catalog<Book>();
Constraints
This is just for typescript I think
class Catalog<T extends CatalogItem> implements Inventory<T> {
// Only types satisfying the extends constraint CatalogItem
// are allowed at compile time. Seems a bit constraining to me.
}
TypeScript Declaration Files
These are typescript wrappers for JavaScript libraries. This allows the typescript compiler to validate your usage.
These will have the extension .d.ts and you can find these on GitHub at definitely typed. Note these may sometimes be out of date.
Search here
npm allows you to install these using
npm install --save @types/lodash
Advanced
Destructuring
Like javascript
let medals : string[] = ['gold', 'silver', 'bronze']
let [first, second, third] = medals;
let person = {
name: 'Audrey',
address: '123 Main St',
phone: '555:1212'
}
let {name, address, phone} = person
Spread Operator
Like javascript
Additional to other array
let newBookIDs = [10,20]
let allBookIDs = [1,2,3, ...newBookIDs] // 1,2,3,10,20
Intersection types
// Previously we had union types on functions e.g.
function test(inArg : number | string) : void {
}
// Now we have Intersection types where all the members
// of the types are combined
function test() : Book & Magazine {
}
// So without publish which is a member of magazine it
// will not compile as it checks all members exist
let serialNovel: Book & Magazine = {
id; 100,
title: 'The Gradual Tale',
author: 'Occasional Pen'
// publisher: 'Serial Press'
}
Mixins
Not sure if this is worthwhile. It seems to be a form of multiple inheritance similar to C++ which most people hate. The key thing is the applyMixins which copies the functions from the base classes to the new class and is "Magic"
// Disposable Mixin
class Disposable {
isDisposed: boolean;
dispose() {
this.isDisposed = true;
}
}
// Activatable Mixin
class Activatable {
isActive: boolean;
activate() {
this.isActive = true;
}
deactivate() {
this.isActive = false;
}
}
class SmartObject {
constructor() {
setInterval(() => console.log(this.isActive + " : " + this.isDisposed), 500);
}
interact() {
this.activate();
}
}
interface SmartObject extends Disposable, Activatable {}
applyMixins(SmartObject, [Disposable, Activatable]);
let smartObj = new SmartObject();
setTimeout(() => smartObj.interact(), 1000);
////////////////////////////////////////
// In your runtime library somewhere
////////////////////////////////////////
function applyMixins(derivedCtor: any, baseCtors: any[]) {
baseCtors.forEach(baseCtor => {
Object.getOwnPropertyNames(baseCtor.prototype).forEach(name => {
Object.defineProperty(derivedCtor.prototype, name, Object.getOwnPropertyDescriptor(baseCtor.prototype, name));
});
});
}
String Literal Types and Type Aliases
// Like enums
let empCategory: 'Manager' | 'Non-Manager'
// Type aliases
type EmployeeCategory = 'Manager' | 'Non-Manager'
Advanced Type Features
Polymorphic this
The this is referring to the type returned. e.g.
class Vehicle {
Drive() {
return this
}
}
class Car extends Vehicle {
CarryPeople() {
return this
}
}
class Truck extends Vehicle {
CarryCargo() {
return this
}
}
let t = new Truck();
t.Drive() // returns a Truck object
Basically we are to understand that the this is the this of the type originally declared not the this of the function in this case Vehicle.
Declaration Merging
This looks like bad news. You can merge things which you declare without saying you are doing it but by just clashing with names e.g.
interface Book {
id: number,
author: string,
category: Category
}
// By typing another they are merged by default
interface Book {
identifier: number,
writer: string
}
Maybe this is a better example where an extension is built on an existing class
import {UniversityLibrarian} from './classes'
declare module './classes' {
interface UniversityLibrarian {
phone: string;
hostSeminar(topic: string): void;
}
}
UniversityLibrarian.prototype.hostSeminar = function(topic) {
console.log('Hosting a seminar on ' + topic)
}
Type Guards
typeof type guard
Protect code for correct type
if ( typeof x === 'string')
{
}
else if ( typeof x === 'number')
{
}
Allows types are
- string
- number
- boolean
- symbol
Custom type guard
You can write your own using
function isBook(text: Book | Magazine) : text is Book {
return (<Book>text).author !== undefined
}
Symbols
The data type symbol is a primitive data type. The Symbol() function returns a value of type symbol, has static properties that expose several members of built-in objects, has static methods that expose the global symbol registry, and resembles a built-in object class, but is incomplete as a constructor because it does not support the syntax "new Symbol()".
let mySymbol = Symbol('first_symbol');
const CLASS_INFO = Symbol();
class myClass
{
[CLASS_INFO](): void {
console.log('This is my class');
}
static [Symbol.hasInstance](obj: Object) : boolean {
...
}
}
let aClass = new myClass(0;
aClass[CLASS_INFO]() // This is my class
May need to do some reading on this
Decorators
Introduction
// Class decorator
// target = Constructor function for the class
function ui_element(target: Function) { // do ui stuff}
// Method decorator
// Parameters are
// t = constructor function for a static method
or prototype for the class if it is an instance member
// p = name of the decorated member
// d = Property descriptor for the member
function my_deprecated(t: any, p: string, d: PropertyDescriptor)
{
console.log('This method will go away soon...');
}
@ui_element
class {
@my_deprecated
someOldMethod() { }
}
// Decorator Factories
function ui_element(element: string) {
return function(target: Function) {
console.log('Create new element : ${element}');
}
}
// Usage
@ui_element('Simple Form')
class ContactForm {
// contact properties
}
Class Decorator
This is the signature for a class decorator
// ClassDectorator Type
<TFunction extends Function>(target: TFunction) => TFunction | void
Example where the constructor is not replaced
export function sealed(name: string ) {
return function(target: Function): void {
console.log('Sealing the constructor: ${name}')
Object.seal(target);
Object.seal(target.prototype)
}
}
@sealed('Class Library')
class Boris {
}
Example where the constructor is replaced
export function logger<TFunction extends Function>(target: TFunction): TFunction {
// Create a Function type
let newConstructor: Function = function() {
console.log('Creating new instance')
console.log(target);
}
// Assign protype and constructor from original
newConstructor.prototype = Object.create(target.prototype);
newConstructor.prototype.constructor = target;
// Return the new function
return <TFunction>newConstructor;
}
Method Decorator
Example
export function readOnly(target : Object,
propertyKey: string,
descriptor: PropertyDescriptor) {
console.log('Setting ${propertyKey}.');
descriptor.writable = false;
}
// Changing to a factory decorator // i.e. remove export and replace with return, remove function name
export function writable(isWritable : boolean) {
return function (target : Object,
propertyKey: string,
descriptor: PropertyDescriptor) {
console.log('Setting ${propertyKey}.');
descriptor.writable = isWritable;
}
}
..
class aClass
{
@writable(false);
testMethod() :void {
console.log("I am a test method")
}
}
..
Asyncronous Calls
Callback functions
// Create Interface (not required by nicer
interface LibMgrCallBack {
// pararameters : return args
(err: Error, titles: string[]) : void
}
function getBooksByCategory(cat: Category, inCallBack: LibMgrCallBack) : void {
// Fake function
setTimeout( () => {
try {
let foundBooks: string[] = Util.GetBooks(cat);
if(foundBooks.length > 0) {
callback(nuT^ll, foundBooks);
}
else {
throw new Error('No Books Found');
}
}
catch(error) {
}
}, 2000);
}
function logCategorySearch(err: Error, titles: string[]) : void {
if(err) {
console.log('Error Message: ${err.message}');
}
else {
console.log('Found following titles');
console.log(titles);
}
}
console.log('Begin')'Found titles: ${titles}'))
getBooksByCategory(Category.Fiction, logCategorySearch);
console.log('Submmitted')
Promises
So,
- Requires 2015
- Similar to Tasks in c#.
- You can chain promises togethe'Found titles: ${titles}'))r
- Simple API, then, catch
function doAsyncWork(resolve, reject) {
// Perform Async work
if(success) resolve(data)'Found titles: ${titles}'))
else reject(reason)
}
let p: Promise<string> = new Promise(doAsyncWork);
// Alternate and more realistic
let p: Promise<string> = new Promise( (resolve, reject) => {
// Perform Async work
if(success) resolve(data)
else reject(reason)
})
Taking callback example
function getBooksByCategory(cat: Category): Promise<string[]> {
let p: Promise<string[]> = new Promise((resolve, reject) => {
setTimeout( () => {
let foundBooks: string[] = Util.GetBooks(cat);
if(foundBooks.length > 0) {
resolve(foundBooks);
}
else {
reject('No Books Found');
}
}, 2000);
});
}
console.log('Begin')
getBooksByCategory(Category.Fiction)
.then(
titles => {
console.log('Found titles: ${titles}');
throw 'something bad happened'; // Force exception
return titles.length;
}, reason = { return 0;})
.then(numOfBooks => console'Found titles: ${titles}')).log('Number Of Books found: ${numOfBooks}')) // Chained
.catch(reason => console.log('Found titles: ${reason}'))
console.log('Beginning')
logSearchResults(Category.Fiction);
console.log('Submitted')
async await
Example
async function doAsyncWork() {
let results = await GetLongTask();
console.log(results)
}
Taking promise example
async function logSearchResult(bookCategory: Category) {
let foundBooks = await getBooksByCategory(bookCategory)
console.log(foundBooks)
}
console.log('Beginning')
logSearchResults(Category.Fiction);
console.log('Submitted')
More Typescript Stuff
Revisiting the transformation aspects of typescript gave me probably some repeated noted to help my tired old brain. These appeal to me because my brain struggles with the problem and the solution is obvious. I am trying to write these down so that I can get the pattern spotting in my brain correctly.
No Enough Generics
This a struggle, as they all are but the issue was, of course, not enough parameters
import { Equal, Expect } from "../helpers/type-utils";
const getValue = <TObj>(obj: TObj, key: keyof TObj) => {
return obj[key];
};
const obj = {
a: 1,
b: "some-string",
c: true,
};
const numberResult = getValue(obj, "a");
const stringResult = getValue(obj, "b");
const booleanResult = getValue(obj, "c");
type tests = [
Expect<Equal<typeof numberResult, number>>,
Expect<Equal<typeof stringResult, string>>,
Expect<Equal<typeof booleanResult, boolean>>
];
export {};
All of the tests fail as the return type is whatever types are in the object. In this case, number, string and boolean. The test is expecting a specific type and the result is a union of number | string | boolean. To be more specific we need to add another generic argument which when you see it it is obvious. What was not obvious to me was the thought of adding more arguments to a solution. By default felt this would make it more complicated
const getValue = <TObj, TKey extends keyof TObj>(obj: TObj, key: TKey) => {
return obj[key];
};
Wrapping a Api
Sometimes we want to apply a generic to the functions are inferred with the correct type.
const useStyled = <TTheme = {}>(func: (theme: TTheme) => CSSProperties) => {
// Imagine that this function hooks into a global theme
// and returns the CSSProperties
return {} as CSSProperties;
};
interface MyTheme {
color: {
primary: string;
};
fontSize: {
small: string;
};
}
const buttonStyle = useStyled<MyTheme>((theme) => ({
color: theme.color.primary,
fontSize: theme.fontSize.small,
}));
const divStyle = useStyled<MyTheme>((theme) => ({
backgroundColor: theme.color.primary,
}));
Passing the generic MyTheme can be tedious and lead to mistakes. We can solve this with a builder function. I.E. a function does this once for us.
const makeUseStyled = <TTheme = {}>() => {
const useStyled = (func: (theme: TTheme) => CSSProperties) => {
return {} as CSSProperties;
};
return useStyled;
};
interface MyTheme {
color: {
primary: string;
};
fontSize: {
small: string;
};
}
export const useStyled = makeUseStyled<MyTheme>();
Now the exported functions knows we are using MyTheme and we can now write without specifying MyTheme
const buttonStyle = useStyled((theme) => ({
color: theme.color.primary,
fontSize: theme.fontSize.small,
}));
const divStyle = useStyled((theme) => ({
backgroundColor: theme.color.primary,
}));
Function Overloads
This probably was not new but seems new. For generics we had the say hello, wave goodbye - well almost. We solved this with generics.
import { expect, it } from "vitest";
import { Equal, Expect } from "../helpers/type-utils";
function youSayGoodbyeISayHello<TGreeting extends "hello" | "goodbye">(
greeting: TGreeting,
): TGreeting extends "hello" ? "goodbye" : "hello" {
return (greeting === "goodbye" ? "hello" : "goodbye") as any;
}
it("Should return goodbye when hello is passed in", () => {
const result = youSayGoodbyeISayHello("hello");
type test = [Expect<Equal<typeof result, "goodbye">>];
expect(result).toEqual("goodbye");
});
it("Should return hello when goodbye is passed in", () => {
const result = youSayGoodbyeISayHello("goodbye");
type test = [Expect<Equal<typeof result, "hello">>];
expect(result).toEqual("hello");
});
For Function overloads this is a lot easier. It seems more like function restrictions to me as the implementation is an amalgamation of the possible options and the function signatures are the permissible types
function youSayGoodbyeISayHello(greeting: "goodbye"): "hello";
function youSayGoodbyeISayHello(greeting: "hello"): "goodbye";
function youSayGoodbyeISayHello(greeting: "goodbye" | "hello") {
return greeting === "goodbye" ? "hello" : "goodbye";
}