Python: Difference between revisions
(3 intermediate revisions by the same user not shown) | |||
Line 1,035: | Line 1,035: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
Now we can define our predicate | Now we can define our predicate functions | ||
<syntaxhighlight lang="python"> | <syntaxhighlight lang="python"> | ||
def not_below_absolute_zero(temperature): | def not_below_absolute_zero(temperature): | ||
"""Temperature not below absolute zero""" | """Temperature not below absolute zero""" | ||
return temperature._kelvin >= 0 | return temperature._kelvin >= 0 | ||
def below_absolute_hot(temperature): | |||
"""Temperature below absolute hot""" | |||
return temperature._kelvin <= 1.416785e32 | |||
</syntaxhighlight> | </syntaxhighlight> | ||
Line 1,085: | Line 1,090: | ||
# For each property name we validate | # For each property name we validate | ||
property_names = [name for name, attr in vars(cls).items() if isinstance(attr, | property_names = [name for name, attr in vars(cls).items() if isinstance(attr, property)] | ||
for name in property_names: | for name in property_names: | ||
_wrap_property_with_invariant_checking_proxy(cls, name, predicate) | _wrap_property_with_invariant_checking_proxy(cls, name, predicate) | ||
Line 2,107: | Line 2,112: | ||
This is because the second (top) decorator is not seen as a property. Further investigation would be need to explain why. Here is the solution | This is because the second (top) decorator is not seen as a property. Further investigation would be need to explain why. Here is the solution | ||
<syntaxhighlight lang="python"> | <syntaxhighlight lang="python"> | ||
class PropertyDataDescriptor(ABC) | from abc import ABC, abstractmethod | ||
class PropertyDataDescriptor(ABC): | |||
@abstractmethod | @abstractmethod | ||
def __get__(self,instance, owner) | def __get__(self, instance, owner): | ||
raise NotImplementedError | raise NotImplementedError | ||
@abstractmethod | @abstractmethod | ||
def __set__(self,instance, value) | def __set__(self, instance, value): | ||
raise NotImplementedError | raise NotImplementedError | ||
@abstractmethod | @abstractmethod | ||
def __delete__(self,instance) | def __delete__(self, instance): | ||
raise NotImplementedError | raise NotImplementedError | ||
@property | @property | ||
@abstractmethod | @abstractmethod | ||
def __isabstractmethod__(self,instance) | def __isabstractmethod__(self, instance): | ||
raise NotImplementedError | raise NotImplementedError | ||
# Virtual Class | # Virtual Class | ||
PropertyDataDescriptor.register(property) | |||
</syntaxhighlight> | </syntaxhighlight> | ||
Latest revision as of 04:10, 24 July 2020
Intro
Python 2 and 3 differences
print "fred" // OK Python 2
print("fred") // Not OK Python 2
Whitespace
Uses full colon and four spaces instead of brackets e.g.
for i in range(5):
x = i * 10
print(x)
Rules
- Prefer four spaces
- Never mix spaces and tabs
- Be consistent on consecutive lines
- Only deviate to improve readability
Help
help(object) gives help. e.g. for the module math
help(math)
Scalar Types, Operators, Control and Other
Types
- int (42)
- float (4.2)
- NoneType (None)
- bool ( True, False) 0 = False !=0 = True
Operators
- == value equality
- != value inequality
- < less-than
- > greater-than
- <= less-than or equal
- >= greater-than or equal
Control
if statementes
if True:
print("Its true")
h = 42
if h > 50:
print("Greater than 50")
elif h < 20:
print("Less than 20")
else:
print("Other")
while loops
while c != statement0:
print(c)
c -= 1 // c = c-1
print("Its true")
while True:
response = input()
if int(response) % 7 == 0:
break
for loops
cities = ["London", "Paris", "Berlin"]
for city in cities:
print(city)
Other
Conditional Expressions
No big surprise but
# Condition statement
if condition:
result = true_value
else:
result = false_value
# Condition expression (elvis result ? a:b
# result = true_value if condition else false_value
def sequence_class(immutable)
return tuple if immutable else list
Lambdas
Lambdas consist of the lambda keyword, argument separated by full colon and expression
lambda arg : expr
e.g.
is_odd = lambda x: x % 2 == 1
Looking a sorted the arguments are
sorted(iterable, key=None, reverse=False) --> new sorted list
The key argument must be a callable.
scientists = ['Maggie C', 'Albert E', 'Niels B']
# using a lambda, splits the names on space and this result is sorted
sorted(scientists, key=lambda name: name.split()[-1])
# Assigning shows
last_name = lamba name: name.split()[-1]
last_name
<function <lambda> at 0x103011c0
#e.g.
last_name("Fred Bloggs")
'Blogs'
# equivalent to
def first_name(name)
return name.split()[0]
Data types
Dates and Times
date
# 2014/1/6
datetime.date(2014,1,6)
datetime.date(year=2014,month=1,day=6)
# Now
datetime.date.today()
# Posix timestamp i.e. number of seconds from 1970 e.g. billionth second
datetime.date.fromtimestamp(1000000000) // datatime.data(2001,9,9)
time
datetime.time(3) // 3 hours
datetime.time(3,2) // 3 hours, 2 mins
datetime.time(3,2,1) // 3 hours, 2 mins, 1 sec
datetime.time(3,2,1,232) // 3 hours, 2 mins, 1 sec, 232 milliseconds
datetime
datetime.datetime(2003,5,12,14,33,22,245232) # 2003/05/12 14:33:22.245232
datetime.datetime.today() # Local now
datetime.datetime.now() # Local now
datetime.datetime.utcnow() # UTC now
# To combine
d = datetime.date.today()
t = datetime.time(8,15)
datatime.datetime.combine(d,t)
timedelta
These will hold the difference between two date times. e.g.
a = datetime.datetime(year=2014, month=5, day=8, hour=14, minutes=22)
b = datetime.datetime(year=2014, month=3, day=14, hour=12, minutes=9)
a-b
datetime.timedelta(55,7980)
timezones
Not sure the python people live in the real world. Default support seems poor
# Make one
cet = datetime.timezone(datetime.timedelta(hours=1), "CET")
# Make a datetime
departure = datetime.datetime(year=2014, month=1, day=7
hour=11, minute=30,
tzinfo=cet)
# Use default one
arrive = datetime.datetime(year=2014, month=1, day=7
hour=13, minute=5,
tzinfo=datatime.timezone.utc)
arrival - departure
datatime.timedelta(0,9300)
Decimal
This can be found in the decimal module and is precise to 28 places. Note the quotes in the examples as using no quotes means we are using floats - arggghhhh
Decimal('0.8') - Decimal('0.7')
# Result
Decimal('0.1')
# set this to stop usage of float constructors
decimal.getcontext().traps[decimal.FloatOperation] = True
# This will fail
Decimal0.8)
Fractions
Floating points come with problems when representing numbers such as 1/3 or other recurring values. The use of fractions provided by python may solve this.
# Two thirds
Fraction(2,3)
Complex Numbers
Python supports these by default
complex(3)
>>> (3+0j)
complex(3,2)
>>> (3+2j)
complex(3,10j)
>>> (3+10j)
Modulus in python
The standard approach to a%b = r is not how python implement this instead they use b*q + r = a. For example
In c++
#include <iostream>
int main()
{
auto a = -7;
auto b = 3;
auto c = (a) % b;
std::cout << "c = " << c << std::endl;
}
In python it uses b*q + r = a. See [[1]]
a = -7;
b = 3;
c = (a) % b;
print(c) // 2
-9 -8 -7 -6 -5 -4 -3 -2 -1 0
| | | | | | | | | |
--------------------------------------
q a
---------
r
The first number divisible by 3 is 9 if we travel negatively. The difference between this and the -7 is 2.
// Floor operator
Similar to the modulus, for integers this operates the same as the modulus and uses the next negative number going negative to calculate the answer
-9 -8 -7 -6 -5 -4 -3 -2 -1 0
| | | | | | | | | |
--------------------------------------
q a
---------
r
Therefore -7 // 3 = 3. The first number divisible by 3 is -9 if we travel negatively.
str
Double and single quotes are supported. Strings are immutable. Multiline
"""This is
a multiline
string"""
m = "This string\nspans multiple\nlines"
Raw Strings like c# @
path = r'C:\users\merlin\Documents'
Format string
m = "The age of {0} is {1}".format('Jim', 32)
print(m) // The age of Jim is 32
# Or without numbers
m = "The age of {} is {}".format('Jim', 32)
# f-strings are like c#
value = 3000
m = f"The value is {value}"
bytes
These work like strings, well ascii strings as and can be created like below
b'some bytpes'
print(b[0]) // 115
decoding to bytes
norsk = "some norsk characters"
data = norsk.encode('utf8')
norwegian = data.decode('utf8')
lists
General
List are a sequence of lists
m = [1,14,5]
// Can be different types
m = ['apple', 7, false]
// Add are mutable
b = []
b.append(1.666)
b.append(1.4444)
print(b) // [1.666, 1.4444]
// Constructor
print(list("characters")) // ['c','h','a','r','a','c','t','e','r','s']
Negative indexing
You can use negative indexing - errrr
s = [3,186,4431,74400, 1048443]
print(s[-1]) // 1048443
print(s[-2]) // 74400
Slicing
Subscript of lists can be achieved with the following
s = [3,186,4431,74400, 1048443]
print(s[1:3]) // 186, 4431
print(s[1:-1]) // 186, 4431, 74400
Dict
General
Dict are value pairs
m = {'1': 'Apple', '2': 'Orange'}
print(m['1']) // Apple
# Replaces
m['1'] = 'Banana']
print(m['1']) // Banana
# Update will add if it does not exist or replace
m.update(2:'Applie')
Set
Set are values like a dictionary with no key and must be unique
k = {91,109}
k.add(54)
# Error if not found
k.remove(91)
# No Error if not found
k.discard(91)
With sets we can compare. e.g.
blue_eyes = {'Olivia','Harry', 'Lily', 'Jack','Amelia'}
blond_hair = {'Harry', 'Jack','Amelia', 'Mia','Joshua'}
# Combined
print(blue_eyes.union(blond_hair)) // {'harry','Jack','Amelia','Joshua','Mia','Olivia','Lily'}
# In both
print(blue_eyes.intersection(blond_hair)) // {'harry','Jack','Amelia'}
# Not in this
print(blond_hair.difference(blue_eyes)) // {'Mia','Joshua'}
# Not in other
print(blond_hair.symmetric_difference(blue_eyes)) // {'Mia','Joshua','Olivia','Lily'}
Tuples
Tuples look like lists but have round brackets.
t = ('Apple', 3.5, False)
# to make a single you need to use the trailing comma or it thinks it is a single type e.g.
t = ('Apple',)
# to index one with pairs use second index e.g
t = ((220,284),(220,285),(220,284),(220,281))
print(t[0][1])
Unpacking like javascript works and swapping
def minmax(items):
return min(items), max(items)
lower, upper = minmax([83, 33, 84,32, 85, 31, 86])
print(lower) // 31
print(upper) // 86
a = 'Apple'
b = 'Pear'
a, b = b, a
print(a) // Pear
print(b) // Apple
Ranges
Range supports arguments stop, start, stop or start, stop, step. e.g.
# 0-5
range(5)
# 10-20
range(10,20)
# 10-20 step 2
range(10,20,2)
Map function
Intro
This is similar to the javascript function. It creates an map object which can be iterated on a runtime. i.e. it does not produce a list only an object which next can be used on,
f = map(ord, "the quick brown fox")
a = next(f)
b = next(f)
c = next(f)
print(a) # 84
print(b) # 104
print(c) # 101
Multi Sequences
If the function needs more args you pass more args. The map ends when any of the sequences ends
sizes = ['small','medium','large']
colors = ['lavendar','teal','burnt orange']
animals = ['koala','platypus','salamander']
def combine(size,color,animal):
return '{},{},{}'.format(size,color,animal)
list(map)combine,sizes,colors, animals))
>> ['small lavender koala','medium teal platypus','large burnt orange salamander']
Filter function
Intro
This accepts a function and a single sequence and like map returns an object not a result. Only the elements which return True are returned.
myObject = filter(is_odd, [1,2,3,4,5,6,7])
None
You can pass None as the function and only the true objects are returned
myObject = filter(None, [0,1, False,True, [], [1,2,3],'','hello'])
>> [1, True, [1,2,3],'hello'])
Reduce
Repeatedly apply a function to the elements of a sequence reducing them to a single value
reduce(operator.add, [1,2,3,4,5])
>>15
# With start value
reduce(operator.add, [1,2,3,4,5],100)
>>115
Comprehensions
List Comprehension Syntax
Generally this is
[expr(item) for item in iterable]
words = "Why sometimes I have believed"
print([len(word) for word in words]) // [3,9, 1, 4, 8]
These can be more complex. e.g.
[(x,y) for x in range(5) for y in range(3)]
[(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2)]
# Which is the same as
point = []
for x in range(5)
for y in range(3)
points.append((x,y))
points
Dict Comprehensions
Like lists above
{expr(key:) expr(value) for item in iterable}
country_to_capital = { 'UK': 'London',
'Brazil': 'Brasilia',
'Sweden': 'Stockholm' }
capital_to_country = { capital: country for country, capital in country_to_capital.items()}
print(capital_to_country) // {'Brasilia': Brazil, 'London': 'UK', 'Stockholm': 'Sweden'}
Iteration
Iterators
Here is how to iterate
s = [1,2,3,4]
myIterator = iter(s)
item1 = next(myIterator)
print(item1) // 1
item2 = next(myIterator)
print(item2) // 2
Writing Own Iterator
Just implement __iter__ and __next__
class ExmapleIterator
def __init__(self,data):
self.index = 0
self.data = data
def __iter__(self):
return self
def __next__(self):
if self.index >= len(self.data):
raise StopIteration()
rslt = self.data[self.index]
self.index += 1
return rslt
Using second argument of iter
The second argument of iter allows you to test the result and exit if True. e.g.
# You should
# see this
# text.
# END
# But not
# this text.
with open('the_above_text.txt', 'rt') as f:
for line in iter(lambda: f.readline().strip(), 'END');
>> You should
>> see this
>> text.
Generators
Generator functions
This is just like javascript redux stuff
def gen123():
yield 1
yield 5
yield 3
myIterator = gen123()
print(next(myIterator)) // 1
print(next(myIterator)) // 5
print(next(myIterator)) // 3
print(next(myIterator)) // Exception
# Or
for v in gen123():
print(v)
...
1
5
3
Generator Expressions
Syntax can be defined as
(expr(item) for item : iterable)
million_squares = (x*x for x in range(1,1000001))
# Generate and output last 10
list(million_squares)[-10:]
# Again will yield nothing
list(million_squares)
Iteration tools
islice
from itertools import count, islice
thousand_primes = islice( (x for x in count() if is_prime(x), 1000)
# thousand_primes is a special islice object which is iterable
# converting to a list
list(thousand_primes)[-10:]
[7841,7853, ..... 7919]
# so to sum first thousand primes
sum(islice( (x for x in count() if is_prime(x), 1000))
3682913
zip
Combine groups together e.g.
sunday = [10,20,30]
monday = [101,201,301]
for item in zip(sunday, monday)
print(item)
...
(10,101)
(20,201)
(30,301)
Exceptions and Errors
Intro
There are many exceptions predefined in python. Checkout the exception hierarchy on the docs page [[2]]. Don't forget about mro() to investigate them.
General
def convert(s):
try:
number = ''
for token in s:
number += DIGIT_MAP[token]
x = int(number)
# Can be on one line
# except (KeyError, TypeError):
except TypeError:
x = -2
raise # rethrow
except KeyError:
x = -1
raise # rethrow
return x
Chaining
Implicit
It an exception occurs as a consequence of an exception the original is stored in __context__
def main():
try:
a = triangle(3,4,10)
print(a)
except TriangleError as e:
try:
print(e, file=sys.stdin) # Deliberate error
except io.UnsupportedOperation as f:
print(e)
print(f)
print(f.__context__ is e)
Explicit
We can catch a known exception and wrap it in our application exception. __cause__ will contain the original exception.
def main():
try:
return math.degrees(math.atan(5,0))
except ZeroDivisionError as e:
raise MyOwnError from e:
print(e)
print(e.__cause__)
Traceback
StackTrace information is available via the __trackback__ and can be printed easily.
def main():
try:
return math.degrees(math.atan(5,0))
except ZeroDivisionError as e:
raise MyOwnError from e:
print(e.__trackback__)
trackback.print_tb(e.__trackback__)
s = trackback.format_tb(e.__trackback__)
print(s)
Asserts
Internal Invariants
You can add assertions in the code to confirm it is working as expected. It only operates if the assertion is true
def modulus_three(n):
r = n % 3
if r == 0:
print("Multiple of 3")
elif r == 1
print("Remainder 1")
else:
assert r == 2, "Remainder is not 2"
print("Remainder 2")
Class Invariants
You can add class assertions on methods. Note unless you run the code with the -O options these are executed and can of course cause performance issues
class SortedClass:
...
def count(self)
assert self._is_unique_and_sorted()
# Must be sorted to work
return int(item in self)
...
def _is_unique_and_sorted(self):
return all(self[i[ < self[i+1] for i in range(len(self) -1))
Context Managers
Intro
For C# this would be the using statement or the dispose pattern. For C++ this is the constructor and destructor. The python course explained it as and uses __enter__() and __exit__()
with context-manger: context-manager.begin() body context-manager.end()
If the __exit__() returns False, the default, the exception is propagated.
Examples
Without contextlib
class LoggingContextManager:
def __enter__(self):
print('logging_context_manager: enter')
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if(exc_type is None:
print('logging_context_manager: normal exit)
else:
print('logging_context_manager: exception '
'type={}, value={}, traceback={}'.format(
exc_type, exc_val, exc_tb))
With contextlib using generator function
import contextlib
import sys
#contextlib.contextmanager
def logging_context_manager():
print('logging_context_manager: enter')
try:
yield 'You are in a with-block!'
print('logging_context_manager: normal exit)
except Exception:
print('logging_context_manager: exception exit',
sys.exc_info())
Functions
General Functions
These are created as below
def foo(arg1, arg2):
return arg1 * arg2
Default Arguments
def foo(arg1, arg2=9):
return arg1 * arg2
Be aware that the def assignment is only run once. Therefore These are created as below
def add_spam(menu=[]):
menu.append('spam')
add_spam() // ['spam']
add_spam() // ['spam','spam']
Advice is to make default arguments not mutable. i.e. not strings and not ints
def add_spam(menu=None):
if(menu==None)
menu = []
menu.append('spam')
return menu
add_spam() // ['spam']
add_spam() // ['spam']
Extended Formal Arguments (params)
Intro
Remember we have positional and keyword arguments in python
Positional arguments
def with an argument prefixed with an asterix means the arguments being passed are a tuple. e.g.
def test(*arg):
print(args)
print(type(args))
test(1,2,3)
1,2,3
<class tuple)
Keyword arguments
def with an argument prefixed with two asterix means the arguments being passed are a dict. e.g.
def test(name, **kwargs):
print(name)
print(kwargs)
print(type(kwargs))
test('img', src="monet.jpg", alt="Sunrise by Claude", border=1)
img
{'src':'monet.jpg', 'border':'1', 'alt':'Sunrise by Claude'}
<class dict)
Extended Call Syntax
Equally the calling of functions can use keyword two asterix. Doing so means the positional parameters are satisfied and the remaining parameters are used to make keyword arguments. e.g.
def color(red, green, blue, **kwargs):
print("r =", red)
print("g =", green)
print("b =", blue)
print(kwargs)
k = {'red': 21,'green': 22,'blue': 23,'alpha': 24, 'beta': 25}
color(**k)
r = 21
g = 22
b = 23
{'alpha' :24, 'beta': 25}
Returning Functions
Intro
In python you can return a function and execute it.
def enclosing():
def local_function():
print('Hi')
return local_function
lf = enclosing()
lf() # // Hi
Factories
We can combine the values are creation of the function with the arguments of the execution of the function. Look at variable exp which is created on execution of raise_to e.g.
def raise_to(exp):
def raise_to_exp(x):
return pow(x,exp)
return raise_to_exp
myfoo = raise_to(2)
myfoo(10) # // 100
myfoo(5) # // 25
Decorators
Intro
Like c# the functions can be decorated. e.g.
from functools import wraps
def check_non_negative(f):
@wraps(f)
def inner_check_non_negative(*args, **kwargs):
print("Got here didn't I")
for value in args:
if value < 0:
raise ValueError(
"Value {} must be greater than 0".format(value))
return f(*args, **kwargs)
return inner_check_non_negative
@check_non_negative
def create_list(value, size):
print("And here")
return [value] * size
create_list(10, -10)
The functools.wrap is necessary to help the support tools such as help.
With parameters
Like typescript you can pass arguments to your decorator by wrapping a decorator in a function and returning the decorator. e.g.
from functools import wraps
def check_non_negative(arg1):
def wrap(f):
print("Inside wrap()")
@wraps(f)
def wrapped_f(*args):
for value in args:
if value < arg1:
raise ValueError(
"Value {} must be greater than {}".format(value, arg1))
f(*args)
return wrapped_f
return wrap
@check_non_negative(10)
def create_list(value, size):
print("And here")
return [value] * size
create_list(10, 10)
create_list(10, -10)
The functools.wraps is necessary to help the support tools such as help.
Class Decorator
Instances
Instances of Classes can be used as Decorators provide they implement the __call__ method
Non Instances
Intro
Here is an example of a simple class decorator. The decorator function accepts only one argument cls.
def my_class_decorator(cls)
for name, attr in vars(cls).items():
print(name)
return cls
@my_class_decorator
class Temperature:
def __init__(self, kelvin)
self._kelvin = kelvin
# Not very python getters and setters
def get_kelvin(self)
return self._kelvin
def set_kelvin(self,value)
self._kelvin = value
# This produces
from class_decorators import *
__module__
get_kelvin
set_kelvin
__init__
__weakref__
__dict__
Detail
Wrapping the functions
This is very much related to the metaclasses section and was quite involved.
First we created a class which was able to check the functions each time the class was used. Like Typescript we create a factory wrapper for the decorator
def invariant(predicate):
def invariant_checking_class_decorator(cls):
# For each method name we validate
method_names = [name for name, attr in vars(
cls).items() if callable(attr)]
for name in method_names:
_wrap_method_with_invariant_checking_proxy(cls, name, predicate)
return cls
return invariant_checking_class_decorator
The proxy method looks like this
from functools import wraps
def _wrap_method_with_invariant_checking_proxy(cls, name, predicate):
method = getattr(cls, name)
assert callable(method)
@wraps(method)
def invariant_checking_method_decorator(self, *args, **kwargs):
result = method(self, *args, *kwargs)
if not predicate(self):
raise RuntimeError(
"Class invariant {!r} violated for {!r}".format(predicate.__doc__, self))
return result
setattr(cls, name, invariant_checking_method_decorator)
Now we can define our predicate functions
def not_below_absolute_zero(temperature):
"""Temperature not below absolute zero"""
return temperature._kelvin >= 0
def below_absolute_hot(temperature):
"""Temperature below absolute hot"""
return temperature._kelvin <= 1.416785e32
Finally the new decorator can be used. Phewww!
@invariant(not_below_absolute_zero)
class Temperature:
def __init__(self, kelvin):
self._kelvin = kelvin
# Not very python getters and setters
def get_kelvin(self):
return self._kelvin
def set_kelvin(self,value):
self._kelvin = value
Wrapping the properties
This approach works until you introduce properties which are not functions.
Adding the properties to the temperature class
class Temperature
...
@property
def celsius(self):
return self._kelvin - 273.15
@setter.celsius
def celsius(self,value):
self._kelvin = value + 273.15
...
Shows that this no longer works. This is because properties are not functions so we have to add checking of properties to the invariant function
def invariant(predicate):
def invariant_checking_class_decorator(cls):
# For each method name we validate
method_names = [name for name, attr in vars(cls).items() if callable(attr)]
for name in method_names:
_wrap_method_with_invariant_checking_proxy(cls, name, predicate)
# For each property name we validate
property_names = [name for name, attr in vars(cls).items() if isinstance(attr, property)]
for name in property_names:
_wrap_property_with_invariant_checking_proxy(cls, name, predicate)
return cls
return invariant_checking_class_decorator
And we need to define the proxy for the properties invariant checker
def _wrap_property_with_invariant_checking_proxy(cls, name, predicate)
prop = getattr(cls, name)
assert isinstanceof(prop,property)
invariant_checking_proxy = InvariantCheckingPropertyProxy(prop, predicate)
setattr(cls, name, invariant_checking_proxy)
Finally we can write our proxy
class InvariantCheckingPropertyProxy:
def __init__(self, referent, predicate):
self._referent = referent
self._predicate = predicate
def __get__(self,instance,owner):
if instance is None:
return self._referent
result = self._referent.__get__(instance,owner)
if not self._predicate(instance):
raise RuntimeError("Class invariant {!r} violated for {!r}".format(self._predicate.__doc__,instance))
return result
def __set__(self,instance,value):
result = self._referent.__set__(instance,value)
if not self._predicate(instance):
raise RuntimeError("Class invariant {!r} violated for {!r}".format(self._predicate.__doc__,instance))
return result
def __delete__(self,instance):
result = self._referent.__delete__(instance)
if not self._predicate(instance):
raise RuntimeError("Class invariant {!r} violated for {!r}".format(self._predicate.__doc__,instance))
return result
Multiple Decorator
Decorators can be multiple. They are executed in reverse order. i.e. decorator1, decorator2
@decorator1
@decorator2
def northern_city()
return ;'Troms0'
Modularity
Importing defs
Best to be selective
from words import (fetch_words, print_words)
// could be BAD BAD!!
from words import *
Passing arguments
import sys
if __name__ == '__main__':
main(sys.argv[1])
Comments
def fetch_words(url):
"""Fetch a list of words from a URL.
Args:
url: The URL of UTF-8 text document.
Return:
A list of strings containing the words from
the document.
"""
story = urlopen(url)
story_words = []
for line in story:
line_words = line.decode('utf8').split()
for word in line_words:
story_words.append(word)
story.close()
return story_words
Scope of Objects
Types of Scope
- Local - Inside current function
- Enclosing - Inside enclosing function
- Global - At the top level of the module
- Built-in - In the special builtins module
Overriding Scope
global
Not using global creates a new count and it shadows the global count.
count = 0
def show_count():
print(count)
def set_count(c)
global count = c
set_count(5)
show_count()
nonlocal
Where there are functions within functions the nonlocal keyword may be used. e.g.
count = 0
def enclosing():
count = 5
def local():
nonlocal count
count = 25
Objects and Types
Named references to objects
Assigning variables is the same as references. Use id() to prove this.
s = [1,2,3]
r = s
s[0] = 500
print(r)
[500,2,3]
p = [4,5,6]
q = [4,5,6]
print(p == q) // True
print(p is q) // False
Passing Arguments are like references
Passing arguments is like passing references
m = [9,15,24]
def modify(k):
k.append(39)
print("k = ", k)
modify(m)
k = [9,15,24, 39]
print(m)
[9,15,24, 39]
Passing Arguments are like references II
Or are they. g is reassigned not mutated
f = [14, 23, 37]
def replace(g):
g = [17,28, 45]
print("g = ", g)
replace(f)
g = [17,28, 45]
print(f)
[14,23,37]
Classes
General
class Fight:
def __init__(self, registration, model, num_rows)
self._registration = registration
self._model = model
self._num_rows = num_rows
def registration(self):
return self._registration
def model(self):
return self._model
def num_rows(self):
return self._num_rows
Access
There is no public, protected or private in Python
Inheritance
Intro
This is achieved using brackets on the name
class MyBaseClass:
def registration(self):
return self._registration
def model(self):
return self._model
def num_rows(self):
return self._num_rows
class Fight(MyBaseClass):
def __init__(self, registration, model, num_rows)
self._registration = registration
self._model = model
self._num_rows = num_rows
Multiple Inheritance
Python supports this. For initializers, only the first base class is automatically called. Where there are methods are defined the same the MRO or Method Resolution Order is used. This can be seen with classname.__mro__. This can also be obtained by calling classname.mro(). In general the class is search in declaration order.
class Fight(MyBaseClass1,MyBaseClass2,MyBaseClass3):
def __init__(self, registration, model, num_rows)
self._registration = registration
self._model = model
self._num_rows = num_rows
super
Super is not like a keyword but instead a function with arguments in Python. There are rules about what it returns based on those arguments.
Class-bound proxy
This is a class bound proxy
super(base-class), derived-class)
Where base-class is a class object and derived-class is a subclass of first argument
- Python finds MRO for derived-class
- It then finds base-class in that MRO
- It takes everything after base-class in the MRO and finds the first class in the sequence with a matching method name
Instance-bound proxy
This is a instance bound proxy
super(class), instance-of-class)
Where class is a class object and instance-of-class is a instance of the first argument
- Python finds MRO for the type of the second argument
- It then finds the location of the first argument in that MRO
- It takes everything after that for matching method name
Super no arguments
You can call super with no arguments. It populates the parameters depending on instance or class method
Instance
super(class-of-method, self)
Class
super(class-of-method, class)
Base Class Init
This is not called by default. To call the base class call super. e.g.
class RefridgeratedShippingContainer(ShippingContainer):
MAX_CELSIUS = 4.0
def __init__(self, owner, contents, celsius):
super().__init__(owner, contents)
Factories for Derived Classes
Using extended call arguments we can work around creating derived classes using base class. e.g.
class BaseClass:
def create_default(cls, attr1):
return cls(attr1, *args, **kwargs)
def __init__(self, attr1):
self._attr1 = attr1
class DervivedClass(BaseClass):
def __init__(self, attr1, attr2):
self._attr1 = attr1
self._attr2 = attr2
f = DervivedClass.create_default('A1','A2')
Static methods
Note if you are calling static methods on classes you should use self and not the class name as this will provide polymorphic behavior unless you do not want this :)
String and Representations
Bit of python up themselves here. Basically repr is for developers and explicit where str is for clients.
class Point2D
def __init__(self,x,y):
self.x = x
self.y = y
def __str__(self):
return '({}, {})'.format(self.x, self.y)
def __repr__(self):
return 'Point2d(x={}, y={})'.format(self.x, self.y)
Properties
Getters and Settters
Not great but this appears to be like this
class MyClass:
# Getter
@property
def myattribute(self)
return self._myattribute
# Setter
@myattribute.setter
def myattribute(self,value)
self._myattribute = value
Derived Class Getters and Settters
In derived class the the getter can be overridden by just redefining. Setter requires you to reference the class which contains the property. e.g.
class MyClass:
# Getter
@property
def myattribute(self)
return self._myattribute
# Setter
@myattribute.setter
def myattribute(self,value)
self._myattribute = value
class Derived(MyClass):
# Setter
@MyClass.myattribute.setter
def myattribute(self,value)
if(value > 10):
raise ValueError("Value out of range")
self._myattribute = value
Horrible access to base class setter
You can access this be calling the baseclassname.attribute.fset(self,value). Which is horrible like this.
class MyClass:
# Getter
@property
def myattribute(self)
return self._myattribute
# Setter
@myattribute.setter
def myattribute(self,value)
self._myattribute = value
class Derived(MyClass):
# Setter
@MyClass.myattribute.setter
def myattribute(self,value)
if(value > 10):
raise ValueError("Value out of range")
MyClass.myattribute.fset(self,value)
__call__
No idea why this is good but essentially it allows to call an instance of an object with no method or rather the method name __call__
class Test
def __init__(self)
self._cache = {}
def __call__(self, arg1)
if arg1 not in self._cache:
self._cache[arg1] = socket.gethostbyname(arg1)
return self_cache[host]
f = Test()
f('bibble.co.nz')
Static Attributes
You qualify the attribute with the class name
class Test:
a_static = 112
def __init__(self, registration, model, num_rows)
self._registration = registration
self._model = model
self._num_rows = num_rows
Test.a_static = Test.a_static + 1
Static Method
Intro
These seem very similar. The tutorial said the rule is simple if you need to refer to the class object within the method, e.g. a class attribute, use class method.
@staticmethod
No access needed to either class or instance objects.
class Test:
a_static = 1337
@staticmethod
def _get_next_serial():
result = Test.a_static
Test.a_static = += 1
return result
def __init__(self, registration, model, num_rows)
self._registration = registration
self._model = model
self._num_rows = num_rows
Test.a_static = Test._get_next_serial()
@classmethod
Requires access to the class object to call other class methods or the constructor
class Test:
a_static = 1337
@classmethod
def _get_next_serial(cls):
result = cls.a_static
cls.a_static = += 1
return result
def __init__(self, registration, model, num_rows)
self._registration = registration
self._model = model
self._num_rows = num_rows
self.a_static = Test._get_next_serial()
A typical use may be a factory. e.g.
class Test:
a_static = 1337
@classmethod
def create_empty_test(cls):
return cls("","", 0)
@classmethod
def create_default_test(cls):
return cls("XXX","YYY", 1)
def __init__(self, registration, model, num_rows)
self._registration = registration
self._model = model
self._num_rows = num_rows
self.a_static = Test._get_next_serial()
Collections
Intro
Python has the following collection protocols.
Intro
Create a collection which is a sorted set
class SortedSet:
def __init__(self, items=None)
self._items = sorted(items)
Container Protocol
This supports the in and not in tests and implements the special method __contains__(item)
class SortedSet:
def __init__(self, items=None)
self._items = sorted(items) if items is not None else []
def __contains__(self, item)
return item in self._items
Sized Protocol
This supports the len(sized) function and must not modify the colection and implements the special method __len__()
class SortedSet:
def __init__(self, items=None)
self._items = sorted(set(items)) if items is not None else []
def __contains__(self, item)
return item in self._items
def __len__(self)
return len(self._items)
Iterable Protocol
This supports the iter(iterable) function and implements the special method __iter__()
class SortedSet:
def __init__(self, items=None)
self._items = sorted(set(items)) if items is not None else []
def __contains__(self, item)
return item in self._items
def __len__(self)
return len(self._items)
def __iter__(self)
return iter(self._items)
# alternative to above
def __iter__(self)
for item in self._items:
yield item
Sequence Protocol
Introduction
Lots to do
- Retrieve slices by slicing item = seq[index], seq[start:stop]
- Produce a reversed sequence r = reversed(seq)
- Find items by value index = seq.index(item)
- Count items num = seq.count(item)
- Concatenate with + operator
- Repetition with * operator
- Implement method __mul__() and __rmul__()
The abstract base class or abc provides a sequence class which implements most of the sequence functionality for us
First Bash
So the code
from collections.abc import Sequence
class SortedSet(Sequence):File:Binary search.png
def __init__(self, items=None)
self._items = sorted(set(items)) if items is not None else []
def __contains__(self, item)
return item in self._items
def __len__(self)
return len(self._items)
def __iter__(self)
return iter(self._items)
def __getitem__(self, index)
result = self.items[index]
# Check for slice as argument and if so sort
return SortedSet(result) if isinstance(index, slice) else result
def __repr__(self)
return "SortedSet({})".format(
repr(self.items) if self._items else ''
)
def __eq__(self,rhs)
# check expected type
if not isinstance(rhs,SortedSet)
return NotImplemented
return self._items == rhs._items
def __ne__(self,rhs)
# check expected type
if not isinstance(rhs,SortedSet)
return NotImplemented
return self._items != rhs._items
Performance of Count
Count in the original solution uses the count method from sequence and there is an O(n). Given there can be only one occurrence it makes sense to use a binary search
def count(self, item):
# Do a binary search from the left
index = bisect_left(self._items, item)
# (index != len(self._items)) Check if in the bound of the collection
# self._items[index] == item Check if the item is the one we are looking for
found = (index != len(self._items)) and (self._items[index] == item)
return int(found)
Looking at the code for count we notice that the first 2 lines are just detecting if the value is contained in the set and therefore, now efficient, can be moved to __contains__
def __contains__(self, item):
index = bisect_left(self._items, item)
return (index != len(self._items)) and (self._items[index] == item)
def count(self, item):
return int(item in self)
Performance of Index
Using what we knew from count
def index(self, item):
# Do a binary search from the left
index = bisect_left(self._items, item)
if (index != len(self._items)) and (self._items[index] == item):
return index
raise ValueError("{} not found".format(repr(item)))
Concatenation and Repetition
To implement this we use the chain function from itertools. Using this reduces the use of temporaries
def __add__(self, rhs):
return SortedSet(chain(self._items, rhs._items))
For repetition
def __mul__(self, rhs):
return self if rhs > 0 else SortedSet()
def __rmul__(self, lhs):
return self * lhs
Now we can remove the Sequence class as we now implement the necessary functions.
Set Protocol
Set requires us to look at the Relationship and Algebraic operators.
Introduction
# Is a subset of e.g. A [1,2,3] is a subset of [1,2,3,4,5]
def isssubset(self, iterable):
return self <= SortedSef(iterable)
# Is a super set of e.g. A [1,2,3,4,5] is a super set of [1,2,3]
def isssuperset(self, iterable):
return self >= SortedSef(iterable)
# Is an intersection e.g. s [1,2,3], t [2,3,4] gives [2,3]
def intersection(self, iterable)
return self & SortedSet(iterable)
# Is an union e.g. s [1,2,3], t [2,3,4] gives [1,2,3,4]
def union(self, iterable)
return self | SortedSet(iterable)
# Xor items not in both sets
def symmetric_difference(self, iterable)
return self ^ SortedSet(iterable)
# Items in lhs but not in rhs
def difference(self, iterable)
return self - SortedSet(iterable)
Advanced Python
Flow Control
While else
This in not liked but is available in python
while condition: execute_when_true() else: # nobreak execute_when_false()
For else
Same a While else but for for loops
for item in iterable
if match(item):
result = item
break
else: # nobreak
result = None
# Always come here
print(result)
Try else
More of the same
try:
f = open(filename,'r')
except OSError:
print('File could not be open')
else:
print('Number of lines', sum(1 for line in f))
f.close()
Switch or Case
There is no switch or case in python. One approach is to implement a dictionary with a function to execute. Another approach is to use singledispatch where you define types you support.
@singledispatch
def draw(shape):
raise TypeError("Dont know how".format(shape))
@singledispatch(Circle)
def _(shape):
print("\u25CF" if shape.solid else "\u25A1")
@singledispatch(Parallelogram)
def _(shape):
print("\u25B0" if shape.solid else "\u25B1")
@singledispatch(Triangle)
def _(shape):
print("\u25B2" if shape.solid else "\u25B3")
Byte-Orientated Programming
Intro
- & And Operator
- | Or Operator
- ^ XOR Exclusive-Or Operator 11100100 ^ 00100111 = 11000011
- ~ Not Compliment Operator 00000000 ~ 11110000 = -11110001
- << Left Shift
- >> Right Shift
Two Compliment
This is how twos compliment works
byte Type and bytearray
Byte Type is immutable and bytearray IS mutable
bytes()
>>> b''
bytes(5)
>>> b'\x00\x00\x00\x00\x00'
bytes(range(65, 65+26))
>>> b'ABCDEFGHIJKMNOPQRSTUVWXYZ'
# Convert from non ascii text not pictured here
bytes('Some foreign chars', 'utf16')
>>> b'\xff\xfeN\x00r\x00w'
# Convert from Hex
bytes.fromhex('54686520')
>>> b'The '
Example Program for reading c structures in Python
This shows the use of memoryview, mmap and struct.iter_unpack. This can be found here Python Bytes Reading Example
Object Internals
Looking at the course it described
- __dict__ dictionary containing attributes
- __getattr__ override get attribute
- __setattr__ override set attribute
- __delattr__ override delete attribute
- __getattribute__ overrides all attributes, __getattr__ is the fallback
Nice to know but would need a reason to investigate further. I am guessing creating objects on the fly would be the reason.
You can also override __new__ the function called on creation of a class. This can save memory by implementing object interning. This is really for a rainy day
Slots
To reduce the system of objects but disallow additional attributes you can use slots e.g.
class Test:
__slots__ = ['attr1','attr2','attr3']
def __init__(self, attr1,attr2,attr3):
self.attr1 = attr1
self.attr2 = attr2
self.attr3 = attr3
import sys
test = Test(1,2,3)
sys.getsizeof(test)
This is not recommended but can resolve issues sometimes.
Descriptors
Python provides a descriptor protocol. This can help in the simplification of properties code. Below is the @property approach example
class Planet
def __init__(self,
radius_meters,
mass_kilos):
self.radius_meters = radius_meters
self.mass_kilos = mass_kilos
@property
def radius_meters(self)
return self._radius_meters
@radius_meters_setter
def radius_meters(self,value)
if value <= 0
raise ValueError('radius_meters value {} is not positive.'.format(value)
self._radius_meters = value
@property
def mass_kilos(self)
return self._mass_kilos
@mass_kilos_setter
def mass_kilos(self,value)
if value <= 0
raise ValueError('mass_kilograms value {} is not positive.'.format(value)
self._mass_kilos = value
The Python descriptor protocol expects you to define
- __get__
- __set__
- __delete__
Below is an implementation of a descriptor which only allows positive entries
from weakref import WeakKeyDictionary
class Positive:
def __init__(self):
self._instance_data = WeakKeyDictionary()
def __get__(self, instance, owner):
return self._instance_data[instance]
def __set__(self, instance, value):
if value <= 0:
raise ValueError)"Value {} is not postivie".format(value))
self._instance_data[instance] = value
def __delete__(self, instance):
raise AttributeError("Cannot delete attribute")
Applying this to the Planet class gives the following
class Planet
def __init__(self,
radius_meters,
mass_kilos):
self.radius_meters = radius_meters
self.mass_kilos = mass_kilos
radius_meters = Positive()
mass_kilos = Positive()
MetaClasses
Intro
With python you can change the behaviour of the underlying metaclasses. This is done by defining classes derived from the class type.
Example
A example is shown below which prevents the reusing of the method name.
class Dodgy()
def wouldnt_happend_in_cpp(self):
return "first method"
def wouldnt_happend_in_cpp(self):
return "second method"
Here we create a metaclass
First create a dictionary which does not allow addition value for existing key.
class OnShotClassNamespace(dict)
def __init__(self,name, existing=None)
super.__init()
# We capture name to make message nicer
self._name = name
if existing is not None:
for k, v in existing:
self[k] = v
def __setitem__(self, key, value)
if key in self:
raise ValueError("Cannot assign to existing key {!r}".format(key))
super.__setitem(key,value)
Next create the metaclass and override __prepare__
class ProhibitDuplicatesMeta(type)
@classmethod
def __prepare__(mcs, name, bases):
return OnShotClassNamespace()
Next derived class from new metaclass
class Dodgy(metaclass=ProhibitDuplicateMeta)
def wouldnt_happend_in_cpp(self):
return "first method"
def wouldnt_happend_in_cpp(self):
return "second method"
Summary of Functions
Further reading might be to look at
- __prepare__(mcs, name, bases, **kwargs) must return a mapping to hold namespace contents
- __new__(mcs, name, bases, namespace, **kwargs) must return a class object
- __init__(cls, name, bases, namespace, **kwargs) must configure a class object
- __call__() on metaclasses is athe instance constructor
Descriptor Revisited
To improve the descriptor example above we can add a metaclass so that the Positive class does know the name of attribute when reporting an error.
Create metaclass to support this
class DescriptorNamingMethod(type):
def __new__(mcs, name, bases, namespace):
for name, attr in namespace.items():
if isinstance(attr,Named):
attr.name = name
return super().__new__(mcs, name, bases, namespace)
Create a class to hold the name of attribute
class Named:
def __init__(self, name=None):
self.name = name
Derive Positive Descriptor class from this to have Named attribute and change error messages to use it.
from weakref import WeakKeyDictionary
class Positive(Named):
def __init__(self, name=None):
super().__init__(name)
self._instance_data = WeakKeyDictionary()
def __get__(self, instance, owner):
return self._instance_data[instance]
def __set__(self, instance, value):
if value <= 0:
raise ValueError)"Value {} {} is not positive".format(self.name, value))
self._instance_data[instance] = value
def __delete__(self, instance):
raise AttributeError("Cannot delete attribute {}".format(self.name))
Finally the only change required to the application class is to change the metaclass to be our new class.
class Planet(metaclass=DescriptorNamingMeta):
def __init__(self
....
Abstract Classes
Intro
This is very involved and needs further investigation. There are virtual abstract methods where the metadata is in common and standard abstract where they are directly derived from the class
C#/C++ bit
To prevent abstract class being instantiated you can use the @abstractmethod decorator.
class Test
@abstractmethod
def abstract_method1(attr1):
Improvements to the Temperature class
Using the @invariant decorator above works fine for one decorator but fails for multiple. e.g.
@invariant(below_absolute_hot)
@invariant(above_absolute_zero)
class Temperature:
...
This is because the second (top) decorator is not seen as a property. Further investigation would be need to explain why. Here is the solution
from abc import ABC, abstractmethod
class PropertyDataDescriptor(ABC):
@abstractmethod
def __get__(self, instance, owner):
raise NotImplementedError
@abstractmethod
def __set__(self, instance, value):
raise NotImplementedError
@abstractmethod
def __delete__(self, instance):
raise NotImplementedError
@property
@abstractmethod
def __isabstractmethod__(self, instance):
raise NotImplementedError
# Virtual Class
PropertyDataDescriptor.register(property)
Change InvariantCheckingPropertyProxy to inherit from this
class InvariantCheckingPropertyProxy(PropertyDataDescriptor):
def __init__(self, referent, predicate):
self._referent = referent
self._predicate = predicate
def __get__(self,instance,owner):
if instance is None:
return self._referent
result = self._referent.__get__(instance,owner)
if not self._predicate(instance):
raise RuntimeError("Class invariant {!r} violated for {!r}".format(self._predicate.__doc__,instance))
return result
def __set__(self,instance,value):
result = self._referent.__set__(instance,value)
if not self._predicate(instance):
raise RuntimeError("Class invariant {!r} violated for {!r}".format(self._predicate.__doc__,instance))
return result
def __delete__(self,instance):
result = self._referent.__delete__(instance)
if not self._predicate(instance):
raise RuntimeError("Class invariant {!r} violated for {!r}".format(self._predicate.__doc__,instance))
return result
# Added __isabstractmethod__
def __isabstractmethod__(self):
return self._referent.__isabstractmethod__
Finally change the invariant_checking_class_decorator to look for PropertyDataDescriptors instead of property
def invariant(predicate):
def invariant_checking_class_decorator(cls):
# For each method name we validate
method_names = [name for name, attr in vars(cls).items() if callable(attr)]
for name in method_names:
_wrap_method_with_invariant_checking_proxy(cls, name, predicate)
# For each property name we validate
property_names = [name for name, attr in vars(cls).items() if isinstance(attr, PropertyDataDescriptors)]
for name in property_names:
_wrap_property_with_invariant_checking_proxy(cls, name, predicate)
return cls
return invariant_checking_class_decorator
Packages
Packages
Python finds packages by looking at sys.path. You can see this by doing
import sys
sys.path
# For entry 0
sys.path[0]
# To add you can
sys.path.append('/mypath');
Another approach is to add your path to PYTHONPATH
export PYTHONPATH=$PYTHONPATH:/mypath
Make a Package
mkdir -p /mypath/reader
touch /mypath/reader/__init__.py
For a simple reader class the contents of __init__.py may be (absolute)
from reader.reader import Reader
For a simple reader class the contents of __init__.py may be (relative)
from .reader import Reader
Controlling whats imported
You can do this by specifying the __all__ content. Looks like a def file in windows dlls. e.g.
from reader.compressed.bzipped import opener as bz2_opener
from reader.compressed.gzipped import opener as gzip_opener
__all__ = ['bz2_opener', 'gzip_opener']
Namespace packages
These are packages split across to directories and the root directories do not contain a __init__.py. Importing namespace packages
- Python scans all entries in sys.path
- if a matching directory with __init__.py is found, a normal package is loaded
- if foo.py is found then it is loaded
- Otherwise, all matching directories in sys.path are considered part of a namespace package
path1
|
--split_farm
|
-- bovine
|
-- __init__.py
-- common.py
-- cow.py
-- ox.py
path2
|
--split_farm
|
-- bird
|
-- __init__.py
-- chicken.py
-- turkey.py
Executable Directory
You can make a executable by providing a __main__.py in the directory.
project
|
-- __main__.py
-- project
|
-- __init__.py
-- stuff.py
-- setup.py
You can then run the code with
python3 reader
Zipping up the directory and it can be distributed as python treats zips a directories. e.g.
python3 reader.zip